Kong

A kong (kan, gang) is a set of four identical tiles. A kong is considered a pung in hands that deal with all pungs. These are kongs:

e3.gif e3.gif e3.gif e3.gifc3.gif c3.gif c3.gif c3.gif

Developing a Kong

There are a few ways to develop a kong. Players may not declare kong when the wall is exhausted and there are no replacement tiles to take.

Big Melded Kong

If you want to use the most recently discarded tile in a kong, you must already have a concealed pung in your hand that matches the discard. You must:

  1. Declare “kong”.
  2. Take the discard. (Do not place the discard in your hand).
  3. Lay down the four tiles of the kong face-up as a set in front of your hand. This set is called a big melded kong.
  4. Draw a replacement tile.
  5. Discard a tile.

If nobody claims the discard, play resumes with the player to the right. Note that some players might get their turns skipped.

z1.gif z1.gif z1.gif + c1.gif = c1.gif c1.gif c1.gif c1.gif
Three concealed identical tiles + discarded matching tile

Small Melded Kong

If you draw a tile that matches a melded pung you already have, you may promote the pung to a kong. Note that you DO NOT have to promote the pung. If you do want to promote the pung, you DO NOT need to do it on the same turn you drew the matching tile. You can declare a small melded kong on any of your turns, but only immediately after you draw a tile from the wall or a replacement tile. You must:

  1. Declare “kong”.
  2. Add the matching tile to your melded pung. This set is called a small melded kong.
  3. Draw a replacement tile.
  4. Optional: Declare a concealed kong or a small melded kong. If you declare one of these kongs, do not go on to step 5. Instead, follow the rules concerning the concealed kong or small melded kong.
  5. Discard a tile. If nobody claims the discard, play resumes with the player to the right.
w4.gif w4.gif w4.gif + z1.gif = w4.gif w4.gif w4.gif w4.gif
Melded pung + drawn matching tile

Concealed Kong

If you draw a tile that matches a concealed pung you have in your hand, you may declare a concealed kong. Note that you DO NOT have to use the tiles as a kong. If you do want to use the tiles as kong, you DO NOT need to do it on the same turn you drew the matching tile. You can declare a concealed kong on any of your turns, but only immediately after you draw a tile from the wall or a replacement tile. You must:

  1. Declare “kong”
  2. Lay down the four tiles of the kong face-down as a set in front of your hand. This set is called a concealed kong. (In non-competition rules the middle two tiles are face-up).
  3. Draw a replacement tile.
  4. Optional: Declare a concealed kong or a small melded kong. If you declare one of these kongs, do not go on to step 5. Instead, follow the rules concerning the concealed kong or small melded kong.
  5. Discard a tile. If nobody claims the discard, play resumes with the player to the right.

Note that the tiles in a concealed kong cannot be placed back into your hand, separated, or re-arranged with any other set.

Also note that if you wish to use a concealed kong as one of your sets but you have to declare it, otherwise you will not have enough tiles to complete the four sets and the pair you need to win.

z1.gif z1.gif z1.gif + z1.gif = z1.gif z1.gif z1.gif z1.gif
Three concealed identical tiles + drawn matching tile

Order of Claims

If players claim the same discard, a pung or kong supercedes a chow. However, a claim of mahjong trumps all other claims.

Robbing the Kong

Robbing the kong occurs when you win off of an opponent's tile that is used to promote a melded pung into a small melded kong. For example, you have 2- and 4-bamboo and are waiting on the 3 in order to win. Your opponent currently has a pung of 3-bamboo melded. He subsequently draws another 3-bamboo with such luck and declares a kong. Unbeknownst to him this is the tile you need and you declare mahjong. Your mahjong trumps his kong as the 3-bamboo completes your hand. This is what it means to rob a kong.

See Also

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-NoDerivs 3.0 License